
A Situated Reasoning Architecture
for Space-based Repair and Replace Tasks*

Ben Bloom
Debra McGrath

Jim Sanborn

The MITRE Corporation
7525 Colshire Drive

McLean, VA 22102-3481

Abstract

An area of increasing interest within AI and Robotics is the integration of techniques from
both fields to the problem of controlling autonomous systems. Space-based systems, such as
NASA’s EVA Retriever, provide complex, realistic domains for this integration research. Space is a
dynamic environment, where information is imperfect, and unexpected events are commonplace.
As such, space-based robots need low level control for collision detection and avoidance, short-
term load management, fine-grained motion, and other physical tasks. In addition, higher level
control is required to focus strategic decision making as missions are assigned and caxried out.
Throughout the system, reasoning and control must be responsive to ongoing change taking
place in the environment.

This paper reports on current MITRE research aimed at bridging the gap between high level
AI planning techniques and task-level robot programming for telerobotic systems. Our approach
is based on incorporating situated reasoning into AI and Robotics systems in order to coordinate
a robot’s activity within its environment. Thus, the focus of this research is on controlling
a robot embedded in an environment, as opposed to the generation and execution of lengthy
robot plans. We present an integrated system under development in a “component maintenance”
domain geared towards repair and replacement of Orbital Replacement Units (ORUS) designed for
use aboard NASA’s Space Station Freedom. The domain consists of a component-cell containing
ORU components and a robot (manipulator and vision system) replacing worn and/or failed
components based on the collection of components available at a given time. High level control
reasons in “component space” in order to maximize the number operational component-cells
over time, while the task-level controls sensors and effectors, detects collisions, and carries out
pick and place tasks in “physical space.” Situated reasoning is used throughout the system to
cope with, for example, non-deterministic component failures, the uncertain effects of task-level
actions, and the actions of external agents operating in the domain.

‘This work is funded by MITRESponsored Research Projects 97060 and 97140. The authors wish to thank
MITRE for its ongoing support of this work. Email address: sanbornOai.mitre.org.

PRECEDHUG PAGE BLANK NOT FILMED

49

1 Introduction This paper presents the initial results of a com-
bined MITRE research effort integrating AI plan-
ning and situated reasoning techniques with
task-level robotics and perception for space-
based autonomous systems. The long-term goal
of this research is to integrate off-line planning,
situated reasoning, and sensor/actuator subsys-
tems across various levels of abstraction in order
to provide both the reactive behavior necessary
for survival in realistic environments, and the in-
trospective reasoning required to carry out delib-
erate tasks and achieve desired goals. The work
presented in this report lays the groundwork for
this long-term goal by providing an integrated
situated reasoning and task-level control archi-
tecture, as well as a system operating in a re-
alistic application domain. Examples from this
domain are used throughout the paper to illus-
trate the approach.

There is a resurgence of interest within the
AI and Robotics communities in integrated ef-
forts leading to the development of robust, au-
tonomous systems for use in dynamic, uncertain,
and unpredictable domains. NASA in particu-
lar has several efforts underway, including its
Systems Autonomy Technology Program (SATP),
a ten year program to establish NASA as a
world leader in intelligent autonomous systems
research and development, the EVA Retriever,
and the Mars Rover project. These programs
are aimed a t addressing two issues in space ex-
ploration:

1. For manned missions, human EVA is danger-
ous, expensive, and time-consuming.

2. For unmanned missions, signal delay times
require autonomous control throughout 2 A Component Repair and
non-trivial time intervals. Maintenance Domain

One of the major hurdles in building autonomous
systems is the integration of off-line deliberative
reasoning (e.g., task planning, route planning,
and resource allocation, etc.) with real-time sit-
uated control (e.g., collision and obstacle avoid-
ance, path expansion, load management, cali-
bration from landmarks, etc.). The former type
of reasoning is goal-directed, and has led to the
development of several constraint-posting plan-
ners (e.g., [Ste81], [Wi184], [Cha85]) generating
plans to satisfy multiple goals. The latter type
of reasoning is event-driven, in that responses to
existing, perceived, or projected situations are
required in order to maintain overall system in-
tegrity. AI research has begun to address situ-
ated reasoning, as well its integration with off-
line plan generation (see, for example, [Kae86],
(GLS871, [AC87], [Dea87], and [SHSS]).

One of the many application areas for space-
based autonomous systems is routine extra-
vehicular maintenance. By “routine mainte-
nance,” we refer to a general class of situations
in which components of a system are scheduled
for maintenance (as determined by expected life-
time) and are also tended to when they fail un-
expectedly. In such an application, a robot must
allocate available resources (spare parts, or mod-
ular components such as ORUs) in order to max-
imize the overall operating status of a collection
of components.

The “routine repair and replace” domain shown
in Figure 1 captures this idea. It consists of a
robotic manipulator, vision system, a component
workcell, and a collection of components. The
workcell is an N x M array of compartments,

50

Workcell

(a) Physical Space (b) Component Space

Figure 1: A Simple Component Repair and Maintenance Domain

each of which may be “filled” by components
of various types. In this way, the workcell may
be thought of as a modular “breadboard” into
which components are inserted to become oper-
ational. Each workcell compartment is labelled
according to the types of components that may
fill it. A component is said to be acceptable to a
compartment whenever it may be used to fill that
compartment. Finally, an expected lifetime (the
mean time to failure, MTTF) is associated with
each type of component in order to model both
routine and unexpected component failures.

In the current system, the workcell is mod-
elled by a “bin” on a tabletop, with different
shaped objects (cylinders, rectilinear and trian-
gular blocks, etc.) representing various compo-
nent types (see Figure l(a)). States of the do-
main are subject to constant flux at the hands
of external (human) agents, whose unanticipated
actions may include adding, removing, moving,
and breaking components. In addition, the fact
that components may fail unexpectedly a t any

time also requires attention to the ongoing sit-
uation. The choice of this repair and replace
domain was influenced by the following consid-
erations:

1.

2.

3.

2.1

The architecture should be realistically seal-
able to handle any of a variety of repair and
replace tasks to be performed in environ-
ments characterized by dynamics and uncer-
tainty (such as Space Station ORU replace-
ment).

The scenario requires the integration of
physical control (robotics) with high-level
reasoning (AI).

The hardware required for developing the
testbed scenario was readily available.

Physical vs. Component Space

The reasoning required for successful operation
in this domain falls into two classes: reason-

51

ing in physical space, and reasoning in compo-
nent space. Physical space reasoning includes the
planning, executing, and monitoring of collision-
free paths for the manipulator and moved ob-
j ec ts, detecting obstacles, not icing objects when
they are moved, and generally dealing with phys-
ical aspects of the domain. The physical space
reasoner used to control the manipulator and vi-
sion system shown in Figure l(a) is known as
the Task-level Robot Programming System (TL-
RPS). Component space reasoning includes allo-
cating available components among empty com-
partments, prioritizing replacement and repair
tasks according to various heuristics, as well
as reacting to unexpected component failures,
moves, additions, and deletions. The Component
Space Reasoner (CSR) provides this functionality
for the component space corresponding roughly
to Figure l(b).

2.2 Interface Language

This section presents the communication speci-
fication between TLRPS and CSR. The interface
has been designed to distinguish between physi-
cal and component space aspects of the domain.

2.2.1 CSR-TLRPS

Put-in object compartment; : Move object from
its present (table) location into the (empty)
compartment; .

Put-at object z y : Place object on the table-
top at TLRPS coordinates (z y) ; object is as-
sumed to be either on the table or within
the workcell.

Put-down object z y : Put down (held) object on
the tabletop at TLRPS coordinates (z y) .

2.2.2 TLRPS-tCSR

Begin-update : Initiates an update of object
and location information from TLRPS. Fol-
lowed by one or more instance of

Delete object : object has been removed
from the domain.

Move object z y 8 : object now centered a t
(z y) rotated by 8 degrees.

Add object z y 8 : object has appeared in the
domain, centered at (z y) rotated by 8 .

End-update : Signals the end of the update.

F a i l e d g r a s p object : TLRPS could not grasp
object.

C o l l i s i o n held-object object-in-path : 06-

ject-in-path prevents moving held-object.

UnreachableBbj e c t object : o6ject
reached in its current location.

Unreachable loca t ion z y : (z y)
reached.

3 Technical Approach

This section describes the operation

cannot be

cannot be

of TLRPS,
CSR, and their integration in the repair and re-
place domain. Since this domain is non-static,
each system must cope with discrepencies be-
tween anticipated and actual states of the do-
main. For example, components may move from
expected locations and may fail (or be broken)
before their MTTF has elapsed. Since exter-
nal agents may change the environment, nei-
ther system can make accurate long-term projec-
tions regarding future states. Rather, the system
must optimize local behavior based on existing
and projected states given the overall component
maintenance goals. The top-level system archi-
tecture is shown in Figure 2.

52

Vision

Figure 2: Top-level System Architecture

3.1 Physical-Space Reasoning

TLRPS resides on a Silicon Graphics IRIS
4D/70GT workstation running the IGRIP 3D
robotics modeling and simulation system from
Deneb Robotics. The vision system consists of
software provided by NASA running on an IBM
PC-AT with added frame grabber and image
processing boards from Data Translation. The
robot currently in use is a Microbot Alpha I.

A single camera with a fixed viewpoint is used to
capture the layout of the robot’s workspace. The
vision software in the PC-AT classifies the objects
in the workspace according to its training data
set corresponding t o the physical component ob-
jects. A workspace description containing object
types and their locations and orientations is then
sent to the IRIS. Image processing software on
the IRIS interprets the workspace description on
each cycle and modifies the world model accord-
ingly, generating CSR update messages, as well as
updating the IGRIP simulation’s 3D graphic dis-

play of the robot and the workspace. Users may
interact directly with TLRPS by entering task-
level commands via p o p u p menus, or turn con-
trol over to CSR. When a task-level command
is received by TLRPS (whether from CSR or a
human user), the command is simulated in 3D
graphics and executed by the robot. The simu-
lation runs one step ahead of the actual robot
execution, checking for possible collisions and
out-of-reach conditions. If such a condition is
detected, TLRPS performs error recovery opera-
tions, registering the simulation and the robot
to a safe configuration. An exception-dependent
error message is generated and sent to CSR when
it is controlling TLRPS.

3.2 Component-space Reasoning

CSR is divided into two main modules: an agenda
manager for prioritizing tasks and issuing com-
mands to TLRPS, and a collection of objects cor-
responding to the various physical objects in the
domain at a given time. CSR’s toplevel control
loop is

(0) get component types used
(1) await TLRPS update
(2) process TLRPS update
(3) if there is an executable task
(4) then issue it to TLRPS

(5) goto (1)

The initialization step (0) determines compo-
nents type definitions and their associated pa-
rameters. This is accomplished by consulting a
file provided before startup. Once this informa-
tion has been processed, CSR enters its main con-
trol loop. The first stage of this loop (Step 1
above) simply puts CSR into a wait state un-
til an update from TLRPS is available. Recall
that these updates consist of a collection of Add,

5 3

Delete, and Move messages. The second stage
(Step 2) processes the update’s content. Dur-
ing this stage, messages are sent to existing CSR
objects mentioned in the update; the message
sent depends on what the update to the object
happens to be. During the processing of these
messages, objects may request that the agenda
manager generate new tasks to, or remove ex-
isting tasks from, its collection of tasks. In the
final stage (Steps 3 and 4), the agenda manager
prioritizes its collection of tasks and, if any are
executable, issues a command to TLRPS to carry
out the most important executable task. Within
CSR, a task is one of

r o u t i n e r e p l a c e component cornpartmenti :
replace worn (but operating) component
with an existing new component acceptable
to cornpartmenti.

immedia te repa i r component cornpartmenti :
replace failed component.

awaitxomponent cornpartmenti : fill
cornpartmenti when an acceptable compo-
nent is added.

i n s t a l l x omponent component cornpartmenti :
put component into cornpartmenti and start
it operating.

de ins ta l lxomponent component
cornpartmenti : stop operating component
and remove it from cornpartmenti.

move-component component x y : move compo-
nent from its current location to (z y).

3.2.1 Active Objects

Most of the reasoning done by CSR is triggered
during update processing. For each physical ob-
ject in the domain, CSR generates a component

object in its component space. The workcell, and
each of its compartments, is also represented as
an active CSR object. Updates from TLRPS relat-
ing to physical objects are then translated into
messages to CSR objects, which may take var-
ious update-dependent actions. This approach
associates reasoning with changing information
at the object level, rather than on the more
traditional rule-interpreter/database approach.
As such, reasoning and control are modified by
changing objects’ responses to messages, rather
than by the actions contained in rule conse-
quents.

To illustrate this approach to object modelling
and situated reasoning, we follow the process-
ing of CSR’s initial update. This update con-
sists of a collection of Add messages from TL-
RPS. The first such message processed corre-
sponds to the workcell. On encountering this
message, CSR generates a workcell object, an ob-
ject for each of the workcell’s compartments, and
initializes their parameters. Following this, a
component object is created for each added com-
ponent. As part of its Add message processing,
the component checks to see whether or not it
lies within some compartment. If not, its status
is “new.” Otherwise, the compartment object is
consulted to determine whether or not the com-
ponent should be accepted. If so, the compart-
ment “installs” the component, by setting the
component’s status to “operating,” and sched-
ules a r o u t i n e r e p l a c e task for sometime in the
future, depending on the MTTF of the newly in-
stalled component. If the compartment does not
accept the component, it attempts to have the
offending component removed by generating a
move-c omponent task.

Once this initial update has been processed,
CSR knows which compartments contain op-
erating components, which need to be filled,
as well as which components are available in

54

the domain. Empty compartments generate
await-component tasks and compete for newly
arriving components according to several crite-
ria, including (1) how long the compartment
has been empty, and (2) the number of differ-
ent types of components the compartment ac-
cepts. The next section discusses the use of these
heuristics in prioritizing tasks.

3.2.2 Tasks and the Agenda M a n a g e r

subtasks : subtasks comprising an abstract
task.

Tasks fall into two classes: primitive tasks,
corresponding directly to TLRPS commands,
and abstract tasks, which have no analo-
gous TLRPS command. Abstract tasks may
have an associated test executed once per cy-
cle whenever the task’s status is :pending.
All tasks have an act, which is executed
when an :executable task becomes :ac t ive .
In the current system, install-component,
deinstallzomponent,andmove-component are In order to take action, component and compart-

ment objects generate tasks which are added to primitive (corresponding to various types of
CSR’s agenda: a simp1e partially Ordered set Of put-in, put-at, and putat commands, respec-
tasks. tasks have the properties, tively); all other CSR tasks are abstract.
which are used in determining their relative im-
portance and/or execution status:

s t a t u s : oneof

In most traditional plan generation and execu-
tion systems, a complete plan to achieve a goal
is generated and then executed stepwise. An un-
derlying assumption of this approach is that the
world will behave as expected during plan exe-
cution. If exceptions occur during execution, the
usual recourse is to more planning. As an exam-
ple, a “routine replace” operation on a compart-
ment is normally composed of two steps:

:pending : not yet ready for execution,

:executable : ready for execution,

: a c t i v e : in progress, or

:done : finished, does not indicate success
or failure.

one of 2 . ins ta l lxomponent newc cornpartmenti
:normal : a routine task, such as

r o u t i n e r e p l a c e ,

immedia te repa i r , or

under the assumption that newc will be avail-
How-

ever, if newc is removed sometime during the
execution of step (l), the resulting situation is
the same as one in which cornpartmenti were

:asap :

:now : highest priority tasks, such as

a non-routine task, such as able when step (2) is to be executed.

await-component, simply waiting to be filled. Recall that in

resourcemeasure : measure of difficulty in ob- this case, the empty compartment generates an
awaitxomponent task to find and then install a
suitable component.

In general, CSR uses component and compart-
ment objects to assist in carrying out plans

taining resources for this task.

timestamp : actual task instantiation time.

super task : associated parent task.

55

whenever the domain is cooperative, but also en-
sures that the appropriate behavior results when
“assumptions” fail. Rather than planning steps
for anticipated future states, CSR generates one
step a t a time, and uses feedback from the world
to determine its next step. The definition for
r o u t i n e r e p l a c e looks like

(de f t a sk rout ine- rep lace
(compartment
component
new-c omponent
replace-time)

: t e s t (and (> (now) replace-time)

: a c t (generate- task
new-component)

‘deinstall-component
component compartment)

(r e se rve compartment
new-component))

Notice that there is no mention of a task cor-
responding to step (2) above in this defini-
tion. If all goes well in the world, the compart-
ment will generate an install-component us-
ing the new component, reserved for it by the
r o u t i n e r e p l a c e task, once the deinstall has
been successfully carried out. However, if for
some reason the new component is no longer
available, the compartment simply generates an
await-component, which searches for another
suitable replacement. Since no assumption is
made as to whether or not the new component
will remain available, the appropriate response
occurs in either case. This approach requires
that cSR objects track their allocations (so that ,
for instance, the compartment can determine
whether or not its reserved component is avail-
able or not), but this is easily managed by in-
forming objects of their allocations and taking
appropriate action during update message pro-
cessing.

The task agenda is ordered in decreasing order
of importance. This ordering is maintained by
merging new tasks, and re-merging tasks when
their parameters change, according to the follow-
ing sequence of pairwise tests:

1.

2.

3.

4.

5.

status - : executable > :pending

priority - :now > :asap > :normal

resources - prefer more constrained

time - prefer older tasks

arbitrary

One case where re-merging is necessary is when
an acceptable component becomes available to
a pending await-component task. New com-
ponents announce their availability by sending
an a d v e r t i s e - ava i l ab le - resourc e message to
the agenda manager, which in turn offers the new
resource to pending tasks in decreasing order of
importance. If a task allocates the available re-
source, the resource is allocated to it, and it is re-
merged into the agenda. When an available com-
ponent is offered to an awaitxomponent task,
it is allocated so long as it is acceptable to the
task’s compartment.

Another way an await-component task may find
an acceptable component is for it to usurp the re-
sources of another, less important task. In gen-
eral, this process examines the task agenda from
back to front until either (1) an acceptable re-
source is found, in which case it is usurped and
the two tasks are re-merged into the agenda, or
(2) the process reaches a task with higher prior-
ity than the intented usurper’s, in which case no
suitable resource is available.

Figure 3(a) shows the state of a work-
cell as cylinder-1, in compartmentl, is to

56

Q I I1 I
(a) deinstall

0

0

(b) usurp

(c) install

Figure 3: CSR in action.

be replaced with cylinder-4. The work-
cell also contains a cylinder (cy l inder2) o p
erating in compartment2 and scheduled for
replacement by c y l i n d e r 3 a t some later
time. The rout inereplace task associ-
ated with compartment1 acts, generating a
deinstall-component task, which is placed at
the head of the agenda (since it is primitive,
and hence, immediately executable). This in
turn issues a TLRPS p u t a t command to remove
cylinder-1. Sometime during the execution of
this command, cylinder-4 is removed, result-
ing in the situation shown in Figure 3(b). At
this point, since compartment1 is empty, and
no longer has a reserved component, it gen-
erates an await-component task. Cylinder3
should be “available” to this new task, but it
is currently allocated to the routinereplace
task associated with cbmpartment2. However,
since the new task has higher priority, it usurps
the resources (cy l inder3) of the lower priority
routinereplace task. This changes its status
to :executable, its action generates a primitive
install-component task, which in turn issues a
TLRPS p u t i n command to complete the replace-
ment, as shown in Figure 3(c).

3.3 CSR/TLRPS Integration

The two systems presented above have been de-
veloped jointly but at physically different sites
in McLean, Virgina (CSR), and Houston, Texas
(TLRPS). CSR is implemented in Portable Com-
mon Loops (P ~ L) and resides on a Symbolics
Lisp Machine. As noted above, TLRPS resides
on a Silicon Graphics machine. The two systems
are connected on an Ethernet LAN at the Hous-
ton site. They communicate via TCP/IP streams
over this network, using the interface language
presented in Section 2.2.

57

3.4 The TLRPS Simulator

Since CSR and TLRPS have been developed at
different sites, a TLRPS simulator has been im-
plemented for CSR’s development and testing.
In addition to simulating TLRPS’S physical-space
reasoning, allowing external agents to man ip
ulate the domain, this simulator models com-
ponent operation so that unexpected (;.e., pre-
MTTF) component failures may occur. It also
provides a graphic user-interface to CSR.

The TLRPS simulator used in testing CSR also
runs on a Symbolics Lisp Machine, with the two
systems simulating CSR-TLRPS interface over a
local Chaosnet. Figure 3 was generated using
screen images from the TLRPS simulator.

4 Current Status and Future
Work

This integrated project has addressed the prob-
lem of integrating high-level and task-level rea-
soning in a dynamic environment. The ar-
chitectures used in both systems are domain-
independent, and will be useful for other NASA
applications, as well as broader application in
manufacturing and assembly, hazardous materi-
als handling, military operations, and undersea
work.

The existing system is able to react to any unex-
pected change that occurs during the execution
of a single CSR primitive task. During periods of
CSR inactivity, updates are available at a rate of
approximately one every ten seconds. CSR’s real
response time is on the order of one-tenth of a
second, so the “snapshot” nature of updates and
update processing suffices for this domain. In
general, the rate of change in dynamic domains
is much faster, so that situated reasoning must

be based on projecting future states in order to
anticipate and avoid exception situations. An
approach to situated reasoning based on these
observations is presented in [San88].

Due to existing hardware, the current system
has very little low-level reactive capability. An
improved hardware system and more integrated
reasoning and control architecture will be re-
quired for more general purpose, robust au-
tonomous control. To this end, MITRE is es-
tablishing an Autonomous Systems Laboratory
(ASL). Research in the ASL will focus on the in-
tegration of deliberative (off-line) planning, sit-
uated reasoning, and hardware subsystems. The
ASL will be composed of “off the shelf” sensing,
robotics, and AI hardware and firmware repre-
senting the significant advances made in these
technologies in recent years. The focus of the
current project will shift from situated reasoning
under a constant goal (e.g., routine repair and
replace), toward more flexible control in a do-
main where several different types of goals are
to be achieved over time. A ground-based mo-
bile system operating in a dynamic domain will
be used as a test-bed to simulate a flexible space-
based automaton for routine extra-vehicular re-
pair, assembly, and retrieval tasks. Deliberative
planning will take as input a collection of tasks to
be carried out (the “daily schedule”) and deter-
mine an ordering among these tasks. Its output
will be information used to monitor activity and
constrain low-level task execution in the domain
via a situated reasoning system. This latter sys-
tem actually controls the physical system as it
operates in its environment by controlling its re-
actions to existing and anticipated states of af-
fairs. This on-line system uses the constraints
from the deliberative planner as heuristics in se-
lecting among tasks it can perform, but is inde-
pendently capable of a basic level of competence
in the domain.

58

Acknowlegements

The authors thank Pete Bonasso and Jim
Reynolds for their contributions to this work,
as well as useful comments on this paper. In
addition, productive discussions have been held
with Jack Benoit, Chris Elsaesser, and Vincent
Hwang. [Wi1841

[Ste81]

References

[AC87]

[Cha85]

[Dea87]

[GLS87]

[Kae86]

[San88]

[SH88]

Philip Agre and David Chapman.
Pengi: an implementation of a theory
of action. In Proc. AAAI-87, 1987.

David Chapman. Planning for Con-
junctive Goals. AI 802, MIT, 1985.

Thomas Dean. Planning, execution,
and control. In Knowledge-Based
Planning Workshop, pages 29-1-29-10,
DARPA, 1987.

Michael Georgeff, Amy Lansky, and
Marcel Schoppers. Reasoning and
Planning in Dynamic Domains: A n
Ezperiment with a Mobile Robot. Inter-
national Technical Note 380, SRI, 1987.

Leslie Pack Kaelbling. An architecture
for intelligent reactive systems. In M.
Georgeff and A. Lansky, editors, The
1986 Workshop on Reasoning about Ac-
tions and Plans, pages 395-410, Mor-
gan Kaufman, 1986.

James Sanborn. A Model of Reac-
tion for Planning in Dynamic Environ-
ments. Master’s thesis, University of
Maryland, May 1988.

James Sanborn and James Hendler.
A model of reaction for planning in

dynamic environments. International
Journal of A I in Engineering, 1988.
Special issue on planning.

M.J. Stefik. Planning with constraints
(molgen: part 1). Artificial Intelli-
gence, 16:141-169,1981.

D.E. Wilkins. Domain-independent
planning: representation and plan gen-
eration. Artificial Intelligence, 22:269ff,
1984.

59

